AD-A077 392

MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE CENTER
A REMARK ON TWO-DIMENSIONAL FINITE AUTOMATA. (U)

UNCLASSIFIED

TR-785

AFOSR-TR-79-1161

END
AMERIC
1-BO
SOC

AD A O 77392

UNIVERSITY OF MARYLAND COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND 20742

DOC FILE COPY

Approved for public release; distribution unlimited.

July 1979

TR-785 AFOSR-77-3271

A REMARK ON TWO-DIMENSIONAL FINITE AUTOMATA

Akira Nakamura
Department of Applied Mathematics
Hiroshima University

and

Computer Science Center
University of Maryland
College Park, MD 20742
See 1473

ABSTRACT

Let S2-APMOTA(m) be an area-preserving two-dimensional multipass on-line tessellation acceptor over square array input languages whose pass number is bounded by m. It is proved that an open problem "Is L(2-NA) & L(S2-AMPOTA(1))?" proposed in a previous paper by Inoue and the present author has a positive solution.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is approved for public release IAW AFR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSE
Technical Information Officer

The support of the U.S. Air Force Office of Scientific Research under Grant AFOSR-77-3271 is gratefully acknowledged, as is the help of Kathryn Riley in preparing this paper.

In [1], we showed that the class of sets accepted by nondeterministic two-dimensional on-line tessellation acceptors properly contains that accepted by two-dimensional nondeterministic finite automata (i.e., L(2-NA) L(2-OTA)) and also that L(2-DOTA) is incomparable with L(2-NA) and L(2-DA). This result (Theorem 4.1 in [1]) was the main theorem of [1]. Also we defined in [2] an area-preserving two-dimensional multipass on-line tessellation acceptor (i.e., 2-AMPOTA) and defined in [3] a 2-AMPOTA whose pass number is bounded by m (i.e., 2-AMPOTA(m)). Further, the 2-AMPOTA(1) over square array input languages was denoted by S2-APMOTA(1). In this notation, we proposed in [3] an open problem "Is L(2-NA) L(S2-AMPOTA(1))?".

In [1], the inputs were <u>rectangular array</u> languages. In this note, we consider <u>square array</u> languages. We prove that Theorem 4.1 in [1] is also valid for square array languages, and hence show that the open problem in [3] has a positive solution.

Let us consider a set $\Sigma = \{0,1,c,e,b\}$ of input symbols and also the input square array languages surrounded by the special boundary symbol #. In this note, we treat exclusively input languages such as shown in Fig. 1.

Figure 1

In Fig. 1, a_{ij} is 0 or 1.

Now, we consider as a <u>chunk</u> a part of the form as shown in Fig. 2:

Figure 2

Let us denote the diagonal parts of the chunk by p_1 and p_2 respectively (Fig. 3):

Figure 3

This chunk plays the same role as the chunk $\frac{\cdot}{\sharp}$ $\frac{\cdot}{r}$ in [1], and the diagonals p_1 and p_2 correspond to the rows r_1 and r_2 , respectively.

A chunk as in Fig. 4 is called an (ℓ,n) -chunk.

Figure 4

Let M be a 2-NA and x,y be any different (ℓ,n) -chunks. Then M-equivalence of x and y is defined in a similar way as in [1]. Note that M always enters or exits a chunk at the diagonals p_1 or p_2 .

Now, let us consider a set T of pictures such as shown in Fig. 1 in which there exists some i $(1 \le i \le \ell)$ such that $a_{i1}a_{i2}...a_{in}$ is the same as the head $a_{01}a_{02}...a_{0n}$ of the top row.

Theorem 1. (1) T ∈ L(2-DOTA)

(2) T & L(2-NA).

Proof:

- (1) is shown without difficulty.
- (2) is provable as follows:

By the same considerations as in [1], there are at most $s = (2^{2(n+2)k+1})^{2(n+2)k} \text{ M-equivalence classes of } (2^n,n) - \text{chunks},$ where k is the number of states of M. We denote those classes by C_1 , C_2 , . . . , C_s .

There are 2^n different strings over $\{0,1\}$ of length n. Let us denote those strings by $R_1, R_2, \ldots, R_{2^n}$. Here, we distinguish chunks depending on the appearances of these rows. For example, $[R_1]$ means a chunk in which only rows corresponding to R_1 appear (see Fig. 5).

Figure 5

 $[R_1, R_2]$ means a chunk in which only rows corresponding to R_1 and R_2 appear (see Fig. 6).

Figure 6

According to this characterization we know that there are v different languages for $(2^n,n)$ -chunks, where

$$v = {}_{2}^{n} {}^{c} {}_{1} + {}_{2}^{n} {}^{c} {}_{2} + \dots + {}_{2}^{n} {}^{c} {}_{2}^{n} = 2^{2^{n}}.$$

Since v>s for large n, we know the following fact: There exists some R_j such that R_j appears in some chunk C_ρ but does not appear in some chunk C_σ ($\rho \neq \sigma$) where C_ρ is M-equivalent to C_σ . Thus, we can prove that $T \in L(2-NA)$ implies a contradiction by making use of the definition of M-equivalence of chunks. Therefore, we get (2).//
Theorem 2. $L(2-NA) \subseteq L(S2-AMPOTA(1))$.

Proof:

L(S2-AMPOTA(1)) is the same as L(2-OTA) over the square array.

Thus, it is provable in the same way as in [1] that an S2-AMPOTA(1) can simulate a 2-NA. Therefore, from Theorem 1 this theorem follows.//

From Theorem 1, we can prove the incomparability of L(S2-DAMPOTA(1)) with L(2-NA) and L(2-DA) by the same method as in [1].

References

- [1] K. Inoue and A. Nakamura: Some properties of twodimensional on-line tessellation acceptors, <u>Information</u> Sciences 13, 1977, 95-121.
- [2] K. Inoue and A. Nakamura: Two-dimensional multipass on-line tessellation acceptors, to appear in <u>Information</u> and <u>Control</u>; also TR-628, Computer Science Center, University of Maryland, College Park, MD, January, 1978.
- [3] K. Inoue, I. Takanami and A. Nakamura: Pass-bounded two-dimensional multiplass on-line tessellation acceptors, <u>Trans. IECE 61-D, 10, 1978, 735-742 (in Japanese).</u>

Acknowledgement

The author would like to thank Professor Azriel Rosenfeld for arranging a very enjoyable four week stay at the Computer Science Center in July 1979, and for valuable comments.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Depred)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFOSR TR-79-1161	3. RECIPIENT'S CATALOG NUMBER
A REMARK ON TWO-DIMENSIONAL FINITE AUTOMATA	Interim hepts
7. AUTHORAS Akira Nakamura	AFOSR-77-3271
Omputer Science Center University of Maryland College Park, MD 20742	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 2304
Air Force Office of Scientific Research/NM Bolling AFB Wash., DC 20332	Jul 79 13 August Apr Pages 12
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Automata Formal languages	
Let S2-APMOTA(m) be an area-preserving two-dimensional multipass on-line tessellation acceptor over square array input languages whose pass number is bounded by m. It is proved than an open problem Is L(2-NA) (5) L(S2-AMPOTA(1))? proposed in a previous paper by Inoue and the present author has a positive solution.	
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED	
403 018	SSIFTCATION OF THIS PAGE (When Date Entered